Sequence 1
PRECAUTIONS General Methadone given on a fixed-dose schedule may have a narrow therapeutic index in certain patient populations, especially when combined with other drugs, and should be reserved for cases where the benefits of opioid analgesia outweigh the known potential risks of cardiac conduction abnormalities, respiratory depression, altered mental states and postural hypotension. Methadone Hydrochloride Injection should be used with caution in elderly and debilitated patients; patients who are known to be sensitive to central nervous system depressants, such as those with cardiovascular, pulmonary, renal, or hepatic disease; and in patients with comorbid conditions or concomitant medications which may predispose to dysrhythmia. Selection of patients for treatment with methadone should be governed by the same principles that apply to the use of other parenteral opioids (see INDICATIONS AND USAGE ). Physicians should individualize treatment in every case (see DOSAGE AND ADMINISTRATION ), taking into account the high degree of interpatient variability in response to and metabolism of methadone. Drug Interactions In vitro results indicate that methadone undergoes hepatic N-demethylation by cytochrome P450 enzymes, principally CYP3A4, and to a lesser extent CYP2D6. Coadministration of methadone with inducers of these enzymes may result in a more rapid metabolism and potential for decreased effects of methadone, whereas administration with inhibitors may reduce metabolism and potentiate methadone's effects. Therefore, drugs administered concomitantly with methadone should be evaluated for interaction potential; clinicians are advised to evaluate individual response to drug therapy. Opioid antagonists, mixed agonist/antagonists, and partial agonists: As with other μ-agonists, patients maintained on methadone may experience withdrawal symptoms when given these agents. Examples of such agents are naloxone, naltrexone, pentazocine, nalbuphine, butorphanol, and buprenorphine. Anti-retroviral agents: Nevirapine: Based on the known metabolism of methadone, nevirapine may decrease plasma concentrations of methadone by increasing its hepatic metabolism. Opioid withdrawal syndrome has been reported in patients treated with nevirapine and methadone concomitantly. Methadone-maintained patients beginning nevirapine therapy should be monitored for evidence of withdrawal and methadone dose should be adjusted accordingly. Efavirenz: Coadministration of efavirenz in HIV-infected methadone-maintenance patients has resulted in decreased methadone plasma concentrations of methadone associated with signs of opiod withdrawal, and necessitating increases in methadone dose. Ritonavir and Ritonavir/Lopinavir: Reduced plasma methadone levels have been observed after administration of ritonavir alone or ritonavir/lopinavir combination. Withdrawal symptoms were however, inconsistently observed. Caution is warranted when administering methadone to patients receiving ritonavir-containing regimens in addition to other drugs known to decrease methadone plasma levels. Zidovudine: Experimental evidence suggests that methadone increases the area under the concentration-time curve (AUC) of zidovudine with possible toxic effects. Didanosine and Stavudine: Experimental evidence suggests that methadone decreased the AUC and peak levels for didanosine and stavudine, with a more significant decrease for didanosine. Methadone disposition was not substantially altered. Cytochrome P450 inducers: The following drug interactions were reported following coadministration of methadone with inducers of cytochrome P450 enzymes. Rifampin: In patients well-stabilized on methadone, concomitant administration of rifampin resulted in marked reduction in serum methadone levels and concurrent appearance of withdrawal symptoms. Phenytoin: In a pharmacokinetic study with patients on methadone maintenance therapy, phenytoin administration (250 mg b.i.d initially for 1 day followed by 300 mg QD for 3-4 days) resulted in ~50% reduction in methadone exposure and concurrently withdrawal symptoms occurred. Upon discontinuation of phenytoin, the incidence of withdrawal symptoms decreased and the methadone exposure increased and was comparable to pre-phenytoin dose scenario. St. John's Wort, phenobarbital, carbamazepine: Administration of methadone along with other CYP3A4 inducers may result in withdrawal symptoms. Cytochrome P450 inhibitors: Since the metabolism of methadone is mediated by the CYP3A4 isozyme, coadministration of drugs that inhibit CYP3A4 activity may cause decreased clearance of methadone. The expected clinical results would be increased or prolonged opioid effects. Thus patients coadministered with inhibitors of CYP3A4 such as azole antifungal agents (e.g., ketoconazole), macrolide antibiotics (e.g., erythromycin), while receiving methadone should be carefully monitored and dosage adjustment made if warranted. Some selective serotonin reuptake inhibitors (SSRI's) (i.e., sertraline, fluvoxamine) upon coadministration may increase methadone plasma levels and result in increased opiate effects or toxicity. Others: Monoamine Oxidase (MAO) Inhibitors: Therapeutic doses of meperidine have precipitated severe reactions in patients concurrently receiving monoamine oxidase inhibitors or those who have received such agents within 14 days. Similar reactions thus far have not been reported with methadone; but if the use of methadone is necessary in such patients, a sensitivity test should be performed in which repeated small incremental doses are administered over the course of several hours while the patient's condition and vital signs are under careful observation. Desipramine: Blood levels of desipramine have increased with concurrent methadone therapy. Potentially Arrhythmogenic Agents: Extreme caution is necessary when any drug known to have the potential to prolong the QT interval is prescribed in conjunction with methadone. Pharmacodynamic interactions may occur with concomitant use of methadone and potentially arrhythmogenic agents such as class I and III antiarrhythmics, some neuroleptics and tricyclic antidepressants, and calcium channel blockers. Caution should also be exercised when prescribing concomitant drugs capable of inducing electrolyte disturbances that may prolong the QT interval (hypomagnesemia, hypokalemia). These include diuretics, laxatives, and in rare cases mineralocorticoid hormones. Interactions with other CNS Depressants: Patients receiving other opioid analgesics, general anesthetics, phenothiazines, other tranquilizers, sedatives, hypnotics, or other CNS depressants (including alcohol) concomitantly with methadone may experience respiratory depression, hypotension, profound sedation, or coma. Use with Mixed Agonist/Antagonist Opioid Analgesics: Agonist/antagonist analgesics (i.e., pentazocine, nalbuphine, butorphanol, or buprenorphine) should not be administered to patients who have received or are receiving a course of therapy with a pure opioid agonist, such as Methadone Hydrochloride Injection. In this situation, mixed agonist/antagonist analgesics may reduce the analgesic effect of Methadone Hydrochloride Injection and/or may precipitate withdrawal symptoms. Anxiety Methadone, used by tolerant patients at a constant maintenance dosage, is not a tranquilizer. Patients who are maintained on this drug will react to life problems and stresses as do other individuals. Anxiety in a patient on methadone should not be confused with narcotic abstinence and should not prompt treatment by increasing the dosage of methadone. The action of methadone in maintenance treatment is limited to the control of symptoms of opioid dependence or pain. Methadone is ineffective for relief of general anxiety. Acute Pain Maintenance patients on a stable dose of methadone who experience physical trauma, postoperative pain or other causes of acute pain cannot be expected to derive analgesia from their stable dose of methadone regimens. Such patients should be given analgesics, including opioids, that would be indicated in other patients experiencing similar nociceptive stimulation. Due to the opioid tolerance induced by methadone, when opioids are required for management of acute pain in methadone patients, somewhat higher and/or more frequent doses will often be required than would be the case for other, non-tolerant patients. Risk of Relapse in Patients on Methadone Maintenance Treatment of Opioid Addiction Abrupt opioid discontinuation can lead to development of opioid withdrawal symptoms (see PRECAUTIONS ). Presentation of these symptoms has been associated with an increased risk of susceptible patients to relapse to illicit drug use and should be considered when assessing the risks and benefit of methadone use. Tolerance and Physical Dependence Tolerance is the need for increasing doses of opioids to maintain a defined effect such as analgesia (in the absence of disease progression or other external factors). Physical dependence is manifested by withdrawal symptoms after abrupt discontinuation of a drug or upon administration of an antagonist. Physical dependence and/or tolerance are not unusual during chronic opioid therapy. If methadone is abruptly discontinued in a physically dependent patient, an abstinence syndrome may occur. The opioid abstinence or withdrawal syndrome is characterized by some or all of the following: restlessness, lacrimation, rhinorrhea, yawning, perspiration, chills, myalgia, and mydriasis. Other symptoms also may develop, including: irritability, anxiety, backache, joint pain, weakness, abdominal cramps, insomnia, nausea, anorexia, vomiting, diarrhea, or increased blood pressure, respiratory rate, or heart rate. In general, chronically administered methadone should not be abruptly discontinued. Special-Risk Patients Methadone should be given with caution and the initial dose reduced in certain patients, such as the elderly and debilitated and those with severe impairment of hepatic or renal function, hypothyroidism, Addison's disease, prostatic hypertrophy, or urethral stricture. The usual precautions appropriate to the use of parenteral opioids should be observed and the possibility of respiratory depression should always be kept in mind. Information for Patients Methadone, like all opioids, may impair the mental and/or physical abilities required for the performance of potentially hazardous tasks such as driving or operating machinery. The patient should be cautioned accordingly. Methadone, like other opioids, may produce orthostatic hypotension in ambulatory patients. Alcohol and other CNS depressants may produce an additive CNS depression, when taken with methadone, and should be avoided. If a patient taking methadone experiences symptoms suggestive of an arrhythmia (such as palpitations, dizziness, lightheadedness, or syncope), that patient should seek immediate medical attention. Carcinogenesis, Mutagenesis, Impairment of Fertility Data from published reports of carcinogenicity studies indicate that there was a significant increase in pituitary adenomas in female B6C2F1 mice consuming 15 mg/kg/day methadone for two years. This dose was approximately 0.6 times a human daily oral dose of 120 mg/day, on a body surface area basis. However, this finding was not seen in mice consuming 60 mg/kg/day (approximately 2.5 times a human daily oral dose of 120 mg/day). Furthermore, in a two-year study of dietary administration of methadone to Fischer 344 rats, there was no clear evidence for treatment related increase in the incidence of neoplasms, at doses as high as 28 mg/kg/day in males and 88 mg/kg/day in females (approximately 2.3 times and 7.1 times, respectively, a human daily oral dose of 120 mg/day) based on body surface area comparison. In published reports, methadone tested negative in tests for chromosome breakage and disjunction and sex-linked recessive lethal gene mutations in germ cells of Drosophila using feeding and injection procedures. Methadone treatment of male mice increased sex chromosome and autosome univalent chromosomes and translocations in multivalent chromosomes. Methadone tested positive in the E.coli DNA repair system and Neurospora crassa and mouse lymphoma forward mutation assays. Pregnancy Teratogenic effects: Pregnancy Category C. There are no controlled studies of methadone use in pregnant women that can be used to establish safety. However, an expert review of published data on experiences with methadone use during pregnancy by TERIS - the Teratogen Information System -concluded that maternal use of methadone during pregnancy as part of a supervised, therapeutic regimen is unlikely to pose a substantial teratogenic risk (quantity and quality of data assessed as “limited to fair”), however, the data are insufficient to state that there is no risk (TERIS, last reviewed October, 2002). Pregnant women involved in methadone maintenance programs have been reported to have significantly improved prenatal care, improved fetal outcomes, and reduced mortality when compared to pregnant women using illicit drugs. Several factors complicate the interpretation of investigations of the children of women who took methadone during pregnancy. These include: the maternal use of illicit drugs, other maternal factors such as nutrition, infection, and psychosocial circumstances, limited information regarding dose and duration of methadone use during pregnancy, and the fact that most maternal exposure appears to occur after the first trimester of pregnancy. In addition, reported studies generally compare the benefit of methadone to the risk of untreated addiction to illicit drugs; the relevance of these findings to pain patients prescribed methadone during pregnancy is unclear. Methadone has been detected in amniotic fluid and cord plasma at concentrations proportional to maternal plasma and in newborn urine at lower concentrations than corresponding maternal urine. A retrospective series of 101 pregnant opiate-dependent women who underwent inpatient opiate detoxification with methadone did not demonstrate any increased risk of miscarriage in the 2 nd trimester or premature delivery in the 3 rd trimester. Several studies have suggested that infants born to narcotic-addicted women treated with methadone during all or part of pregnancy have been found to have decreased fetal growth with reduced birth weight, length, and/or head circumference compared to controls. The growth deficit does not appear to persist into later childhood. However, children born to women treated with methadone during pregnancy have been shown to demonstrate mild but persistent deficits in performance on psychometric and behavioral tests. Methadone should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Additional information on the potential risks of methadone may be derived from animal data. Methadone does not appear to be teratogenic in the rat or rabbit models. However, following large doses, methadone produced teratogenic effects in the guinea pig, hamster and mouse. One published study found that in hamster fetuses, subcutaneous methadone doses of 31 mg/kg or greater (estimated exposure was approximately 2 times a human daily oral dose of 120 mg/day on a mg/m 2 basis, or equivalent to a human daily intravenous dose of 120 mg/day) on day 8 of gestation produced exencephaly and neurological effects. Some of the reported effects were observed at doses that were maternally toxic. In another study, a single subcutaneous dose of 22-24 mg/kg methadone (estimated exposure was approximately equivalent to a human daily oral dose of 120 mg/day on a mg/m 2 basis; or half a human daily intravenous dose of 120 mg/day) on day 9 of gestation in mice also produced exencephaly in 11% of the embryos. However, no effects were reported in rats and rabbits at oral doses up to 40 mg/kg (estimated exposure was approximately 3 and 6 times, respectively, a human daily oral dose of 120 mg/day on a mg/m 2 basis; or 1.5 and 3 times a human daily intravenous dose of 120 mg/day) during days 6-15 and 6-18, respectively. Nonteratogenetic Effects: Babies born to mothers who have been taking opioids regularly prior to delivery may be physically dependent. Onset of withdrawal symptoms in infants is usually in the first days after birth but may be delayed for two to four weeks. Withdrawal signs in the newborn include irritability and excessive crying, tremors, hyperactive reflexes, increased respiratory rate, increased stools, sneezing, yawning, vomiting, and fever. The intensity of the syndrome does not always correlate with the duration of maternal opioid dose or maternal dose. There is no consensus on the appropriate management of infant withdrawal. There are conflicting reports on whether the risk of sudden infant death syndrome (SIDS) is increased in infants born to women treated with methadone during pregnancy. Abnormal fetal nonstress tests (NSTs) have been reported to occur more frequently when the test is performed 1-2 hours after a maintenance dose of methadone in late pregnancy compared to controls. Published animal studies suggest that perinatal exposure to opioids including methadone may alter neuronal development and behavior in the offspring. Perinatal methadone exposure in rats has been linked to alterations in learning ability, motor activity, thermal regulation, nociception responses and sensitivity to other drugs. Additional animal data demonstrates evidence for neurochemical changes in the brains of methadone-treated offspring, including the cholinergic, dopaminergic, noradrenergic and serotonergic systems. Clinical Pharmacology for Pregnancy: Pregnant women have significantly lower trough plasma concentrations, increased plasma methadone clearance and shorter half-life than after delivery. Dosage adjustment using higher doses or administering the daily dose in divided doses may be necessary in pregnant women treated with methadone. [See CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION ]. Labor and Delivery: As with all opioids, administration of methadone to the mother shortly before delivery may result in some degree of respiratory depression in the newborn, especially if higher doses are used. Methadone is not recommended for obstetric analgesia because its long duration of action increases the probability of respiratory depression in the newborn. Narcotics with mixed agonist-antagonist properties should not be used for pain control during labor in patients chronically treated with methadone because they may precipitate acute withdrawal. Nursing mothers: Methadone is secreted into human milk. There is no information on use of parenteral methadone in breast feeding, or on the safety of the high doses of methadone typically used in chronic pain treatment. The safety of breastfeeding while taking oral methadone is also controversial. At maternal oral doses of 10-80 mg/day, methadone concentrations from 50 to 570 ug/L in milk have been reported, which, in the majority of samples, were lower than maternal serum drug concentrations at steady state. Peak methadone levels in milk occur approximately 4-5 hours after an oral dose. Based on an average milk consumption of 150 mL/kg/day, an infant would consume approximately 17.4 ug/kg/day, which is approximately 2-3% of the oral maternal dose. Methadone has been detected in very low plasma concentrations in some infants whose mothers were taking methadone. Women on high dose methadone maintenance, who are already breast feeding, should be counseled to wean breast-feeding gradually in order to prevent neonatal abstinence syndrome. Methadone-treated mothers considering nursing an opioid-naïve infant should be counseled of the presence of methadone in breast milk. Because of the potential for serious adverse reactions in nursing infants from methadone, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. Pediatric Use Safety and effectiveness in pediatric patients below the age of 18 years have not been established. Geriatric Use Clinical studies of Methadone Hydrochloride Injection did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for elderly patients should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function and of concomitant disease or other drug therapy. Renal Impairment The use of methadone has not been extensively evaluated in patients with renal insufficiency. Hepatic Impairment The use of methadone has not been extensively evaluated in patients with hepatic insufficiency. Methadone is metabolized in the liver and patients with liver impairment may be at risk of accumulating methadone after multiple dosing. Gender The use of methadone has not been evaluated for gender specificity.